Kamis, 29 September 2011

Resume of Pembudayaan Matematika di Sekolah Untuk Mencapai Keunggulan Bangsa


Pembudayaan Matematika di Sekolah Untuk Mencapai Keunggulan Bangsa
Oleh Marsigit
Jurusan Pendidikan Matematika, FMIPA Universitas Negeri Yogyakarta

Reviewed by: Seto Marsudi (09301241009)
Mathematics Education Regular 2009
(http://rasamalaempat.blogspot.com/)

It is necessary to be able to cultivate mathematical understanding of the meaning of mathematics in various dimensions. Dimensional mathematical meaning can be seen from the mathematical dimensional side for concrete objects and mathematical dimensions for the objects of mind. Materially, then mathematical object can be concrete objects, pictures or a model of cube, the colorful symbol of big or small numbers, square-shaped pond, pyramid-shaped roof, the pyramids in Egypt, the right triangle-shaped roof, circular wheel, etc.. Then materially, mathematical objects are in or around our neighborhood. Meanwhile, mathematical objects are in the form of thought objects formally. Thought objects derived from concrete objects by doing an "abstract" and "idealization". Abstraction is an activity in which only take certain properties only to be thought or learned. Idealization is the activity that considers the perfect of existing properties. From the cube model made of teak wood, then by abstraction we only learn about the shape and size. By idealizing then we obtain that segments of the cube are straight lines that really straight without disabilities.
Mathematical communication includes materials communication, formal communication, normative communication and spiritual communication. Mathematics material communications is dominated by the nature of horizontal direction from direction of its vitality. In terms of the involvement, then numbers of units involved are minimal when compared with communication from other dimensions. Mathematics formal communication is dominated by properties of outside correlational or inside the vitality of its potential. Outside or inside correlation has distinction of the meaning between outside and inside properties. Correlation between the differences of properties determines the nature of the subject or the object of communication. Normative mathematical communication is characterized by melting of the correlational appointment properties of the appointment on the subject and the object itself. However, normative communication is said to have a higher dimension due to its potential involvement of the units more, wider and more complex.
In relation to learning mathematics then we are more suited to define mathematics as school mathematics, but for college-level mathematics we define it as a formal mathematical or axiomatic. Acculturation of mathematics can contribute to the nation through innovation of mathematics learning excellence performed continuously. In relation for obtaining the nation benefits then we can think of mathematics, learning mathematics and mathematics education at different hierarchical levels or levels of intrinsic, extrinsic or systemic. Explicitly, mathematical acculturation is based on: (1) knowledge of mathematics in various dimensions, which include the nature, justification and occurrence, (2) mathematical objects in various dimensions which include the nature and origin, (3) the use of formal mathematics, including its effectiveness in science, technology and other sciences, and (4) practices of mathematics on various dimensions more generally, including the activities of the mathematician or mathematical activity from elementary school students.

Resume of “REVITALISASI PENDIDIKAN MATEMATIKA” Oleh : Marsigit (FPMIPA IKIP YOGYAKARTA)


“REVITALISASI PENDIDIKAN MATEMATIKA”
Oleh : Marsigit
(FPMIPA IKIP YOGYAKARTA)

Reviewed by: Seto Marsudi (09301241009)
Mathematics Education Regular 2009
(http://rasamalaempat.blogspot.com/)

Until now there is not yet agreement on the best way how to teach mathematics. Jaworski (1994: 40) even states that there is no a best way to teach mathematics. Teach math is not easy because we find that (college) students are also not easy in learning mathematics. On the other hand found the fact that it is not easy for educators to change the style of teaching. While we are required, as educators, to constantly adjust our teaching methods in accordance with the demands of changing times.
Shirley (1986: 34) explains that mathematics can be classified into formal and informal, applied and pure. Based on this division, we can divide the activities of mathematics into 4 (four) types, where each has different characteristics:
a. formal-pure mathematics, including mathematics developed at the University and the mathematics taught in schools;
b. formal-applied mathematics, that developed inside or outside education, such as a statistician who worked in the industry.
c. informal-pure mathematics, mathematics which is developed outside the educational institution; may be attached to the culture of pure mathematics.
d. informal mathematics, applied mathematics that is used in all daily life, including crafts, office work and trade.
Revitalization of mathematics education also implies the need to attempt to formulate a mathematical learning model that is considered in accordance with our conditions and in accordance with the demands of changing times. Revitalization of mathematics education trying to put the important role of teachers to make math education more in line with the (returned to) educate in the sense of meaning in truth and nature of science which is the object of learning itself.
Revitalization of mathematics education is an effort in the direction where the practitioners of mathematics education are given the opportunity to conduct self reflection, to then be faced with a multi-entry decision on the basis of attitude-depth study of a new paradigm that is offered. Recognized that it is not easy to realize the revitalization of education without the awareness and greatness of soul, both macro and micro world of our education. Otherwise the paradigms of mathematics education will remain a utopia that only up to the only rhetoric.

Jumat, 23 September 2011

Dari Kota Cilacap..

Alhamdulillah kelar juga ngerjain tugas ngeresume tiap minggu ini. Ada yang beda kali ini, yaitu aye ngepostingnya dari kota Cilacap! The City of Lights (Cilacap Bercahaya mksudnya..). Kudu nyepedah dulu lah nyari warnet, huft..luar biasa dah..
Gimana kabar temen-temen yang lgi kuliah/di Jogja? Ahh senangnya bisa menuntut ilmu di kelas hari ini. Nantikan kedatangan saya ke kelas lagi yak! hehe
*btw da yg tau situs buat donlot hunter x hunter chpter 300-ke atas tnpa pk bayar? repot juga nih..

Resume of GERAKAN REFORMASI UNTUK MENGGALI DAN MENGEMBANGKAN NILAI-NILAI MATEMATIKA UNTUK MENGGAPAI KEMBALI NILAI-NILAI LUHUR BANGSA MENUJU STANDAR INTERNASIONAL PENDIDIKAN Oleh : Dr. Marsigit, M.A.


GERAKAN REFORMASI UNTUK MENGGALI DAN MENGEMBANGKAN NILAI-NILAI MATEMATIKA UNTUK MENGGAPAI KEMBALI NILAI-NILAI LUHUR BANGSA MENUJU STANDAR INTERNASIONAL PENDIDIKAN
Oleh : Dr. Marsigit, M.A.
Disampaikan pada Seminar Bertema: Nilai Luhur Bangsa dan Pembelajaran Matematika di Sekolah dalam Menuju Standarisasi Sekolah Nasional dan Bertaraf Internasional
FMIPA UNY, Minggu 30 Nopember 2008

Reviewed by: Seto Marsudi (09301241009)
Mathematics Education Regular 2009
(
http://rasamalaempat.blogspot.com/)

Presumably, the facts is enough to show that this is the time for Indonesian nation to reexamine the paradigm of development. Education can provide a foundation for the development of the noble values ​​of the reforms in legal, political, economic, culture and others. Thus, reforms in education are demands that can not be bargained.

National educational reform can be done at two levels of macro and micro. At the macro level, the national education reform must be able to renew the vision and develop the educational paradigm and scrape out the constraints of education while maintaining and improving the quality and professionalism and empowerment of communities towards the New Indonesia, Indonesia that opened, democratic and united.

Teachers can play a role object and subject of educational reform by improving the ability to educate and manage the classroom. But the fact is not easy because students find out that learning is not easy. There are still a considerable gap between educational ideals and practices in the field.

The value of mathematics can be seen from the context of the ontological, epistemological and axiological within the limits of intrinsic value, extrinsik and systemic. For a self-learner of mathematics then the lowest value of mathematics is that if only his own use, a higher value if the math can be used for public interest. But the highest math scores is if it can be used systemically for the wider interest. But the values ​​of mathematics are developed should be coupled with critical thinking because the math is none other than critical thinking itself. The sharpness of the future of mathematics can wander through a teleological concept that what happens in the future at least be photographed through the present. With analog thinking then what happens to the disclosure of the value of mathematics can be used also in the disclosure of the noble values ​​of the nation. The noble values ​​can be achieved again none other than merely by the method of translating and translated from the context of the passage of time past, present, and future.

In the field of education, teachers need to continually evaluate deficiency or excess of teaching in order to obtain information for improving teaching; if is needed to learn new techniques which are more attractive and effective (Alexander, et al, in Bourne, 1992). For that teachers need to receive encouragement and assistance of relevant parties, especially the principal and school inspector, so that they can realize the good teaching. A teacher can reflect the style of teaching well and flexible if the teacher ways of organizing classes, making use of teaching resources, the achievement of teaching according to student ability, the development of evaluation systems, the handling of individual differences, and the realization of a particular teaching style according to the needs .

Required a 'political will' of the government to put education back to the essence of 'educate' in accordance with the essence of 'the subject of students' and the nature of 'scientific', so that education is not only seen as something that is 'required' but something that is 'required' by learner, so that education does not regard the subject of students as 'investment' as the subject development but that needs to be 'developed'.

Resume of PEMANFAATAN VIDEO TAPE RECORDER (VTR) UNTUK PENGEMBANGAN MATEMATIKA REALISTIK DI SMP Dr. Marsigit, MA Universitas Negeri Yogyakarta


PEMANFAATAN VIDEO TAPE RECORDER (VTR) UNTUK
PENGEMBANGAN MATEMATIKA REALISTIK DI SMP
Dr. Marsigit, MA
Universitas Negeri Yogyakarta

Reviewed by: Seto Marsudi (09301241009)
Mathematics Education Regular 2009
(
http://rasamalaempat.blogspot.com/)

Realistic Mathematics emphasizes the construction of the context of concrete objects as a starting point for students to acquire mathematical concepts. According to Hans Freudental in Sugiman (2007) mathematics is a human activity and must be linked to reality. Concrete objects and environment objects can be used as a context for learning mathematics in building mathematical connections through social interaction. Assessment and analysis of learning mathematics that have been recorded into the video tape recorder (VTR) is one of the main ways or businesses that can be done by the teacher.

By doing the observations and analysis on the VTR on learning mathematics, which has recorded a teacher who has been carrying out a realistic approach to mathematics learning, then teachers can examine and seek other alternatives for obtaining the development of concepts or ideas about concrete objects and objects of the environment around can be used as a context for learning mathematics in building mathematical connections through social interaction.

A mathematical model of learning that has been recorded in the VTR certainly has its advantages and disadvantages. So teachers can discuss it to gain new knowledge by comparing his experiences. As for the VTR itself also has drawbacks, such as: the limited point of view, not all aspects can be recorded, image quality, image capture moments that are not appropriate.

Use of VTR learning mathematics by realistic approaching can provide the following benefits:
1. Teachers have the opportunity to test the concrete objects and environment objects can be used as a context for learning mathematics in building mathematical connections through social interaction.
2. Teachers have the opportunity to explore and reflect on learning math concepts realistic.
3. Teachers have the opportunity to exchange experiences with other teachers about the development of realistic mathematical learning.
4. Teachers have the opportunity to reflect on the preparation of teaching and learning process (PBM) in junior high school mathematics in accordance with the principles PMRI
5. Teachers have the opportunity to reflect on the development of learning resources for teaching and learning process (PBM) in junior high school mathematics in accordance with the principles PMRI
6. Teachers have the opportunity to reflect on the development of assessment activities for teaching and learning process (PBM) in junior high school mathematics in accordance with the principles PMR

Resume of LESSON STUDY ON MATHEMATICAL THINKING: Developing Mathematical Methods in Learning the Total Area of a Right Circular Cylinder and Sphere as well as the Volume of a Right Circular Cone of the Indonesian 8th Grade Students Marsigit, Mathilda Susanti, Elly Arliani Yogyakarta State University, Indonesia


LESSON STUDY ON MATHEMATICAL THINKING:
Developing Mathematical Methods in Learning the Total Area of a Right Circular Cylinder and Sphere as well as the Volume of a Right Circular Cone of the Indonesian 8th Grade Students

Marsigit, Mathilda Susanti, Elly Arliani
Yogyakarta State University, Indonesia

Reviewed by: Seto Marsudi (09301241009)
Mathematics Education Regular 2009
(
http://rasamalaempat.blogspot.com/)

Katagiri, S. (2004) menegaskan bahwa kemampuan yang paling penting yang anak-anak perlu dapatkan saat ini dan di masa depan, sebagai masyarakat, ilmu pengetahuan, dan memajukan teknologi secara dramatis, bukan kemampuan untuk dengan benar dan cepat melaksanakan tugas-tugas yang telah ditentukan dan diperintahkan, melainkan kemampuan untuk menentukan sendiri apa yang harus mereka lakukan atau apa yang mereka harus mengisi diri dengan melakukannya. Kegiatan matematika tidak bisa hanya ditarik keluar dari topi, mereka harus dipilih dengan cermat sehingga anak-anak membentuk konsep, mengembangkan keterampilan, mempelajari fakta-fakta dan memperoleh strategi untuk menyelidiki dan memecahkan masalah. Berpikir matematika memiliki keanekaragaman pengetahuan atau keterampilan sederhana. Ini adalah bukti bahwa berpikir matematika melayani tujuan penting dalam memberikan kemampuan untuk memecahkan masalah sendiri seperti dijelaskan di atas, dan ini tidak terbatas pada masalah khusus ini.
Penelitian ini bertujuan untuk mempromosikan siswa untuk mengembangkan metode matematika dalam mempelajari total luas sebuah silinder tegak melingkar dan bola dan juga volume kerucut tegak melingkar. Desain penelitian meliputi: persiapan (RENCANA), pelaksanaan (LAKUKAN), dan refleksi (AMATI). Instrumen yang digunakan untuk pengumpulan data terdiri dari kuesioner, wawancara, pengamatan pelajaran, dan VTR Pembelajaran. Penelitian ini dimulai dengan dua seri diskusi antara guru dan ceramah dan diikuti dengan mengamati dan merefleksikan dua kegiatan pembelajaran di kelas.

Dalam Lesson Study
ini, para peneliti telah berusaha untuk mengungkap gambaran di mana guru diupayakan untuk mempromosikan metode matematika dalam mempelajari total luas sebuah silinder tegak melingkar dan bola serta volume kerucut tegak melingkar. Hasil mencolok dari penelitian dapat dinyatakan bahwa metode matematika siswa dapat ditelusuri melalui skema kegiatan belajar mengajar sebagai berikut:

1. Masalah Pembentukan dan Pemahaman yang muncul ketika siswa:
a. Mengamati model tertentu dari silinder tegak melingkar, mengamati model tertentu dari Sphere, dan mengamati model tertentu kerucut tegak melingkar
 b.mengidentifikasi komponen-komponen dari silinder tegak melingkar, bola, dan kerucut tegak melingkar
c. mendefinisikan konsep silinder tegak melingkar, bola, dan kerucut tegak melingkar
d.
mendapat pertanyaan dan pemberitahuan dari guru untuk mencari konsep-konsep

2. Membangun Perspektif muncul ketika siswa:
a. Menggunakan model konkrit untuk mencari total luas silinder tegak melingkar, area bola dan volume kerucut tegak melingkar
b. belajar bahwa tinggi silinder tegak melingkar adalah sama dengan lebar persegi panjang tersebut; dan keliling lingkaran adalah sama dengan panjang persegi panjang
c. Belajar dari panduan guru untuk memahami prosedur cara mencari volume kerucut tegak melingkar
d.
memecahkan model silinder tegak melingkar ke komponen-komponennya
3. Memperoleh Solusi muncul ketika siswa:
a. mencoba untuk mencari tahu area lateral silinder tegak melingkar
b. mencoba untuk mengetahui total luas silinder tegak melingkar
c. mencoba untuk mengetahui daerah bola
d. mengumpulkan data dari pengukuran volume kerucut dibandingkan dengan volume silinder

Resume of Stimulating Primary Mathematics Group-Discussion By Shisumi Shimizu (Institute of Education, Tsukuba University, Japan) Marsigit (Faculty of Mathematics and Science, the State University of Yogyakarta, Indonesia)


Stimulating Primary Mathematics Group-Discussion
By
Shisumi Shimizu (Institute of Education, Tsukuba University, Japan)
Marsigit (Faculty of Mathematics and Science, the State University of Yogyakarta, Indonesia)

Reviewed by: Seto Marsudi (09301241009)
Mathematics Education Regular 2009
(
http://rasamalaempat.blogspot.com/)

Diskusi kelompok kecil dapat dianggap sebagai merupakan serangkaian kegiatan budaya yang diselenggarakan oleh guru yang mencoba untuk mendorong anak-anak untuk mengkomunikasikan konsep mereka kepada orang lain. Tujuan utama dari penelitian ini adalah untuk secara aktif meningkatkan praktek mengajar matematika berdasarkan posisi ideal dari model yang baik dari pengajaran matematika primer dan atas dasar asumsi bahwa guru dapat belajar dan menciptakan pengetahuan melalui pengalaman konkritnya dan mengamati serta merenungkan pengalaman itu. Kerangka penelitian ini adalah tindakan mengajar dalam mengajar matematika kelas VI Sekolah Dasar.

Dalam penelitian ini kami telah mengembangkan tiga siklus penelitian tindakan kelas (
PTK) dari skema pengajaran yang berbeda yang merupakan bagian dari praktik umum dalam pengaturan pendidikan. Mereka bertujuan untuk memperpanjang belajar anak-anak dari siklus 1 dan siklus 2 yang memberikan pengalaman siswa untuk mengembangkan konsep mereka. Proses penelitian tindakan meliputi analisis masalah dan rencana strategis, pelaksanaan rencana strategis, observasi dan evaluasi tindakan dengan metode yang tepat dan teknik, refleksi atas hasil evaluasi dan tindakan keseluruhan dan proses penelitian (Zuber dan Skerritt , 1992).
Pada siklus pertama, guru mengarahkan siswa untuk memiliki beberapa kompetensi untuk mengkarakterisasi beberapa pola nomor yang dihasilkan dengan melakukan penjumlahan dari dua  digit angka yang dapat dibalik, sebagai berikut:
21 + 21 = ...
14 + 41 = ...
36 + 63 = ...
Etc ...

Pada siklus kedua, guru mengarahkan siswa untuk memiliki beberapa kompetensi untuk mengkarakterisasi beberapa pola nomor yang dihasilkan dengan melakukan pengurangan dari dua digit angka yang dapat dibalik, sebagai berikut:

81-18 = ...
82-28 = ...
92-29 = ...
Etc ...

Skema dari proses belajar mengajar pada siklus pertama dan kedua dikarakteristikan sebagai berikut. Pertama, guru memperkenalkan pelajaran, informasi yang disampaikan, mengajukan masalah dan menjelaskan apa yang siswa harus lakukan dalam kegiatan-kegiatan berikut. Kedua, memerintahkan siswa untuk menghasilkan penjumlahan atau pengurangan dari segala bentuk dua angka yang dapat dibalik, guru membiarkan siswa untuk bekerja dalam kelompok-diskusi; keseluruhan ada 8 kelompok-diskusi, masing-masing terdiri dari 4 siswa. Ketiga, guru mendorong siswa untuk mempresentasikan hasil diskusi mereka dan kemudian berusaha untuk menyimpulkan hasil.
Dalam penelitian tindakan kelas, peneliti menemukan bahwa jika guru memiliki persiapan yang baik dan mengembangkan beberapa skema untuk mengajar, peran siswa sebagai konstruktor pengetahuan mereka menjadi jelas. Namun, penelitian ini menunjukkan bahwa anak-anak tidak hanya melakukan kegiatan di bawah bimbingan guru. Mereka mampu mengembangkan kegiatan mereka berdasarkan pengaruh pada arah dan fokus dari kegiatan itu sendiri. Penelitian ini menyimpulkan bahwa melalui penelitian tindakan kelas siswa tidak hanya menjadi sebagai pembelajar aktif tetapi juga sebagai konstruktor yang hidup dari pengetahuan mereka sendiri.